
django-geoip Documentation
Release 0.5dev

coagulant

March 02, 2017

Contents

1 Contents 3

2 Contributing 15

i

ii

django-geoip Documentation, Release 0.5dev

App to figure out where your visitors are from by their IP address.

Detects country, region and city, querying the database with geodata. Optional high-level API provides user location
in request object.

Note: Currentrly django-geoip supports only ipgeobase.ru backend. It provides accurate geolocation in Russia
and Ukraine only. There are plans to add other backends in future releases.

Contents 1

http://ipgeobase.ru

django-geoip Documentation, Release 0.5dev

2 Contents

CHAPTER 1

Contents

Installation

This app works with python 2.7, 3.4+, Django 1.10 and higher.

Recommended way to install is via pip:

pip install django-geoip

3

django-geoip Documentation, Release 0.5dev

Basic

• Add django_geoip to INSTALLED_APPS in settings.py:

INSTALLED_APPS = (...
'django_geoip',
...
)

• Create application tables in database:

python manage.py migrate

• Obtain latest data to perform geoip detection by running management command:

python manage.py geoip_update

Advanced

In order to make user’s location detection automatic several other steps are required:

• Add LocationMiddleware to MIDDLEWARE_CLASSES:

MIDDLEWARE = (...
'django_geoip.middleware.LocationMiddleware',
...

)

• Provide a custom location model (inherited from django_geoip.models.GeoLocationFacade)

• Specify this model in Settings:

GEOIP_LOCATION_MODEL = 'example.models.Location' # just an example, replace with your own

• Include app urls into your urlconf if you want to allow visitors to change their location:

urlpatterns += [
...
url(r'^geoip/', include('django_geoip.urls')),
...

]

• Add local ISO codes if you want to change or add countries in Settings:

GEOIP_CUSTOM_ISO_CODES = {
"RU": " ",

}

Usage

The app provides both high and low-level APIs to work with geolocation. Low-level API works super-simple: it
guesses geographic location by an IP adress. High-level API is more complex and deeply integrated in Django: it
automatically detects user location in every request and makes it available as request.location.

4 Chapter 1. Contents

django-geoip Documentation, Release 0.5dev

Low-level API usage

Low-level API allows you to guess user’s location by his IP address. This function returns a database record, associ-
ated with IP’s city, region and country.

Here is a basic example:

from django_geoip.models import IpRange

ip = "212.49.98.48"

try:
geoip_record = IpRange.objects.by_ip(ip)

print geoip_record.city
>> ()

print geoip_record.region
>> ()

print geoip_record.country
>> Russia ()

except IpRange.DoesNotExist:
print 'Unknown location'

High-level API usage

The app provides a convenient way to detect user location automatically. If you’ve followed advanced installation
instructions, user’s location should be accessible via request object:

def my_view(request):
""" Passing location into template """
...
context['location'] = request.location
...

request.location is an instance of a custom model that you’re required to create on your own (details below).

Location model rationale

Location model suites the basic needs for sites with different content for users, depending on their location. Ipgeobase
forces Country-Region-City geo-hierarchy, but it’s usually too general and not sufficient. Site content might depend
on city only, or vary on custom areas, combining various cities, that don’t match actual geographic regions.

In order to abstract geography from business logic, django-geoip requires a model, specific to your own app.

Creating custom location model

Create a django model, that inherits from django_geoip.models.GeoLocationFacade. It might be a proxy
model that doesn’t require a separate database table, but it might be handy in many cases.

Location should implement following classmethods:

get_available_locations()
Returns a queryset of all active custom locations.

1.2. Usage 5

https://docs.djangoproject.com/en/dev/topics/db/models/#proxy-models
https://docs.djangoproject.com/en/dev/topics/db/models/#proxy-models

django-geoip Documentation, Release 0.5dev

get_by_ip_range(ip_range)
Returns single instance of location model, corresponding to specified ip_range. Raises DoesNotExist if no
location is associated with given IP address.

get_default_location()
Returns single instance of location model, acting as a fallback when get_by_ip_range fails.

New in version 0.3.1: It can return placeholder value GEOIP_LOCATION_EMPTY_VALUE to store empty
location. This is useful if you want to mark the location is unknown.

Example of custom location model

Very basic implementation of GeoLocationFacade for demonstration purpose:

class MyCustomLocation(GeoLocationFacade):
""" Location is almost equivalent of geographic City.

Major difference is that only locations
from this model are returned by high-level API, so you can
narrow down the list of cities you wish to display on your site.

"""
name = models.CharField(max_length=100)
city = models.OneToOneField(City, related_name='my_custom_location')
is_default = models.BooleanField(default=False)

@classmethod
def get_by_ip_range(cls, ip_range):

""" IpRange has one to many relationship with Country, Region and City.
Here we exploit the later relationship."""

return ip_range.city.my_custom_location

@classmethod
def get_default_location(cls):

return cls.objects.get(is_default=True)

@classmethod
def get_available_locations(cls):

return cls.objects.all()

Switching user’s location

Switching location from front-end is very much like changing language in Django (in fact the code is almost the same
with a little bit of difference, docs are a nice rip-off).

As a convenience, the app comes with a view, django_geoip.views.set_location, that sets a
user’s location and redirects back to the previous page.

Activate this view by adding the following line to your URLconf:

Note that this example makes the view available at /geoip/change/
(r'^geoip/', include('django_geoip.urls')),

The view expects to be called via the POST method, with a location identifier location_id set in
request. It saves the location choice in a cookie that is by default named geoip_location_id. (The
name can be changed through the GEOIP_COOKIE_NAME setting.)

After setting the location choice, Django redirects the user, following this algorithm:

• Django looks for a next parameter in the POST data.

6 Chapter 1. Contents

https://docs.djangoproject.com/en/1.0/topics/i18n/#the-set-language-redirect-view

django-geoip Documentation, Release 0.5dev

• If that doesn’t exist, or is empty, Django tries the URL in the Referrer header.

• If that’s empty – say, if a user’s browser suppresses that header – then the user will be redirected to
/ (the site root) as a fallback.

Here’s example part of a view rendering a form to change location:

def get_context(self, **kwargs):
return {'LOCATIONS': location_model.get_available_locations()}

Here’s example HTML template code:

{% load url from future %}

<form action="{% url 'geoip_change_location' %}" method="post">
<input name="next" type="hidden" value="/next/page/" />

<select name="location_id">
{% for location in LOCATIONS %}
<option value="{{ location.id }}">{{ location.name }}</option>
{% endfor %}

</select>
<input type="submit" value="Change" />
</form>

Under the hood

Data storage

All geoip data, including geography and geoip mapping is stored in the database. To avoid unnecessary database hits
user location id is stored in a cookie.

Geography

Django-geoip supports only ipgeobase geography, which consist of following entities: Country, Region, City.
Database maintains normalized relationships between all entities, i.e. Country has many Regions, Region has many
Cities.

1.3. Under the hood 7

django-geoip Documentation, Release 0.5dev

IP ranges

Backends

There is currently no infrastructure to use alternative geoip backends, but it’s planned for future releases. Pull requests
are also welcome.

Ipgeobase backend

ipgeobase.ru is a database of russian and ukranian IP networks mapped to geographical locations.

It’s maintained by RuCenter and updated daily.

As of 30 June 2013 it contains info on 990 cities and 193666 Ip Ranges (some networks doesn’t belong to CIS).

Here a is demo of ip detection: http://ipgeobase.ru/

Updating GeoIP database

Note: Currentrly django-geoip supports only ipgeobase.ru backend.

To update your database with fresh entries (adds new geography and completely replaces all IpRegions with fresh
ones):

python manage.py geoip_update

8 Chapter 1. Contents

http://ipgeobase.ru
http://nic.ru
http://ipgeobase.ru/

django-geoip Documentation, Release 0.5dev

Warning: This is irreversible operation, do not use on production!
If you wish to clear all geodata prior the sync (deletes all Cities, Regions, Countries and IpRanges):

python manage.py geoip_update --clear

New in version 0.3.1: To reduce the size of indexes and database you can exclude countries from import. It’s achieved
by specifying only needed county codes in settings:

IPGEOBASE_ALLOWED_COUNTRIES = ['RU', 'UA']

Note: If you’re having 2006, ’MySQL server has gone away’ error during database update, setting
max_allowed_packet to a higher value might help. E.g. max_allowed_packet=16M

Settings

django-geoip has some public configuration:

class django_geoip.settings.geoip_settings.GeoIpConfig(**kwargs)
GeoIP configuration

COOKIE_DOMAIN = ‘’
Cookie domain for LocationCookieStorage class.

COOKIE_EXPIRES = 31622400
Cookie lifetime in seconds (1 year by default) for LocationCookieStorage class.

COOKIE_NAME = ‘geoip_location_id’
Cookie name for LocationCookieStorage class (stores custom location’s primary key).

LOCATION_EMPTY_VALUE = 0
Empty value for location, if location not found in ranges. This value must be returned in a custom location
model in get_default_location class method if necessary.

LOCATION_MODEL = ‘django_geoip.models.GeoLocationFacade’
A reference to a model that stores custom geography, specific to application.

STORAGE_CLASS = ‘django_geoip.storage.LocationCookieStorage’
Persistent storage class for user location

Reference

This section contains documentation to module internals, useful for django-geoip developers.

GeoLocationFacade

Locator

location_model

django_geoip.base.location_model – SimpleLazyObject to get current location model.

1.5. Settings 9

django-geoip Documentation, Release 0.5dev

Integrating with django-hosts

Django-hosts routes requests for specific hosts to different URL schemes defined in modules called “hostconfs”.
Django-geoip plays nice with django-hosts, allowing to redirect user to specific geodomain.

In this example www.site.com will redirect to asia.site.com for users from the East and us.site.com for
american ones. For european users in will remain www.site.com‘ without redirect (default location).

0. Install and setup django-geoip Let’s assume we have defined this custom location model:

app/models.py
from django_geoip.models import Country, GeoLocationFacade

class Location(GeoLocationFacade):
slug = models.SlugField('Site kwarg')
country = model.ForeignKey(Country)

This model is referenced in settings.py:

GEOIP_LOCATION_MODEL = 'app.models.Location'

We also need to change default user location storage mechanism, because it’s fully determined by hostname:

GEOIP_STORAGE_CLASS = 'django_geoip.storage.LocationDummyStorage'

1. Install and setup django-hosts

pip install django-hosts==0.4.2

Make sure you also followed other steps: adding to INSTALLED_APPS, adding a middleware, creating
hosts.py, setting up ROOT_HOSTCONF and DEFAULT_HOST.

Note: django_geoip.middleware.LocationMiddleware should come before
django_hosts.middleware.HostsMiddleware in MIDDLEWARE_CLASSES to make things
work together.

2. Configure host_patterns in hosts.py:

host_patterns = patterns('',
Default www.sitename.com pattern that redirects users to <location>.sitename.com
depending on their IP address
host(r'www', settings.ROOT_URLCONF, name='www', callback=detect_location),

Geodomain for specific region: <location>.sitename.com, doesn't redirect
host(r'(?P<site_slug>[\w-]+)', settings.ROOT_URLCONF, name='location', callback=save_location),

)

3. Define detect_location callback:

from django_geoip.base import location_model, Locator
from django_hosts.reverse import reverse_host

def detect_location(request):
""" Callback takes request object and redirects to specific location domain if appropriate """

default_location = location_model.get_default_location()

User is a first-timer and doesn't have a cookie with detected location

10 Chapter 1. Contents

http://readthedocs.org/docs/django-hosts/en/latest/#installation
http://readthedocs.org/docs/django-hosts/en/latest/#installation
http://readthedocs.org/docs/django-hosts/en/latest/callbacks.html

django-geoip Documentation, Release 0.5dev

if Locator(request).is_store_empty():
If we're at www-address, but not from default location, then do redirect.
if request.location != default_location:

return _redirect(request, domain=reverse_host('location', kwargs={'site_slug': request.location.slug}))
request.location = default_location

4. Define save_location callback:

def save_location(request, site_slug):
""" Store location in request, overriding geoip detection """
request.location = get_object_or_404(Location, slug=site_slug)

Contributing

Most of the django-geoip code is covered with tests, so if you wish to contribute (which is highly appreciated)
please add corresponding tests. Running tests:

make test

This command runs only unittests, which is preferred behavior. However, you might need to run system tests too
(might take some time and requires internet connection):

make test_system

Checking coverage (requires coverage package):

make coverage

Finally, if you want to run tests against all python-django combinations supported:

tox

Changelog

0.5.2 (2015-02-04)

• Fix update command to handle regions with same name in different countries

0.5.1 (2014-09-03)

• Fix packaging issues

0.5 (2014-08-31)

• Django 1.7 support (if you’re using Django<1.7 with South, you’ll need to upgrade South to latest version).

• Fix ipgeobase update edge case when IPGEOBASE_ALLOWED_COUNTRIES is not empty

1.8. Contributing 11

django-geoip Documentation, Release 0.5dev

0.4 (2014-01-13)

• *BACKWARDS INCOMPATIBLE* Fixed latitude and longitude being mixed up during import

• Django 1.6 support

• Support for pip 1.5

0.3.1 (2013-06-30)

• Ability to exclude countries on import via IPGEOBASE_ALLOWED_COUNTRIES option (thnx, @saip-
puakauppias)

• Store explicit empty location when no location matches (thnx, @saippuakauppias)

• Restored Django 1.3 support

0.3.0 (2013-01-29)

• Added python 3 support (3.2+)

• Minimum required django 1.4.2, use version 0.2.8, if you don’t want to upgrade.

• GeoLocationFascade alias removed

0.2.8 (2012-12-10)

• Cookie storage ignores non-integer location_id

0.2.7 (2012-08-28)

• Fixed country names to be verbal names rather than iso3166 codes

• Minor docs improvements

• Fixed handling of invalid ips passed to geoip

0.2.6 (2012-05-10)

• Fixed a bug, introduced in 0.2.5, causing old facade name not work as expected.

• set_location view now accepts both location and location_id.

• *BACKWARDS INCOMPATIBLE* Removed magic _get_cookie_domain behavior in favor of config-
uring GEOIP_COOKIE_DOMAIN.

0.2.5 (2012-04-17)

• GeoLocationFascade renamed to GeoLocationFacade, old name will work till 0.3

12 Chapter 1. Contents

django-geoip Documentation, Release 0.5dev

0.2.4 (2012-04-15)

• Proper datamigration for countrynames

• GeoLocationFascade defines abstract classmethods

• bulk_create support for Django 1.4

• Default view url renamed from change to setlocation

• Improved docs a lot more

• Short tutorial for django-hosts integration

0.2.3 (2012-04-11)

• Added country names

• Management update command renamed from ipgeobase_update to geoip_update

• Management command verbose output with progressbar

• Dropped django 1.2 support

• Documentation improved

0.2.2 (2012-01-25)

• Fixed middleware behavior when process_request never ran (redirects)

• Improved location storage validation, fixed cookie domain detection

• Added Locator.is_store_empty function to reveal if geoip detection was made

0.2.1 (2012-01-25)

• Fixed middleware behavior when request.location is None

• Added GEOIP_STORAGE_CLASS setting to override default user location storage

• Introduced LocationDummyStorage class to avoid cookie storage

0.2 (2012-01-20)

• Major refactoring of the app, added more tests

• Fixed a typo in get_availabe_locations

0.1 (2012-01-18)

• Initial release

Authors

Django-geoip is written and maintained by Ilya Baryshev.

1.10. Authors 13

django-geoip Documentation, Release 0.5dev

Contributors

• Denis Veselov (@saippuakauppias)

14 Chapter 1. Contents

CHAPTER 2

Contributing

You can grab latest code on dev branch at Github.

Feel free to submit issues, pull requests are also welcome.

Good contributions follow simple guidelines

15

https://github.com/futurecolors/django-geoip
https://github.com/futurecolors/django-geoip/issues

django-geoip Documentation, Release 0.5dev

16 Chapter 2. Contributing

Index

C
COOKIE_DOMAIN (django_geoip.settings.geoip_settings.GeoIpConfig

attribute), 9
COOKIE_EXPIRES (django_geoip.settings.geoip_settings.GeoIpConfig

attribute), 9
COOKIE_NAME (django_geoip.settings.geoip_settings.GeoIpConfig

attribute), 9

G
GeoIpConfig (class in

django_geoip.settings.geoip_settings), 9
get_available_locations(), 5
get_by_ip_range(), 5
get_default_location(), 6

L
LOCATION_EMPTY_VALUE

(django_geoip.settings.geoip_settings.GeoIpConfig
attribute), 9

LOCATION_MODEL (django_geoip.settings.geoip_settings.GeoIpConfig
attribute), 9

S
STORAGE_CLASS (django_geoip.settings.geoip_settings.GeoIpConfig

attribute), 9

17

	Contents
	Contributing

